British Journal of Applied Science & Technology X(X): XX-XX, 20XX

SCIENCEDOMAIN international

www.sciencedomain.org

Data Analyzing by Attention to Weighted Multicollinearity in Logistic Regression Applicable in Industrial Data

Marzieh Shahmandi^{*1}, Mohammad Mehdi Gharahbeigi², Tooraj Ghaffary² and Leila Shahmandi²

> ¹Department of Mathematics, Isfahan University of Technology, Isfahan, Iran ² Young Researchers club, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Research Article

Received: XX December 20XX Accepted: XX December 20XX Online Ready: XX December 20XX

Abstract

An industry complex produces steel sheets with specific properties such as low thickness, high strength and suitable formability in order to reduce the vehicle weight and fuel consumption and prevention of environmental pollution. The aim of this study is to investigate the effect of mechanical properties such as (yield strength, final tensile strength) and chemical properties like (silicon, aluminium, nitrogen gas) on suitable formability of manufacturing steel sheets and predict the probability of crack existence on steel sheets according to real steel data set. Existence or lake of existence of crack on steel sheet is determined by bending test with the angle of zero degree. Existence of multicollinearity between mentioned explanatory variables has an effect on the probability of crack existence. Because the suitable regressions are logistic, correction techniques based on least squares do not work. Developments in weighted multicollinearity diagnostics are used to assess maximum likelihood logistic regression parameter estimates. Then principal component, a biased estimation method, is used in a way that it has additional scaling parameter which can accommodate a spectrum of explanatory variable standardizations. After that, by this α scale parameter, other biased estimation methods such as partial least squares, ridge and Stein are explained. They can considerably reduce the variance of the parameter estimation.

Keywords: logistic regression; partial least squares; principal component; quasistandardization; ridge; Stein; weighted multicollinearity

2010 Mathematics Subject Classification: 62H35; 62J86; 62J07; 62p30; 97K80; 46N30

*Corresponding author: E-mail: marzieh.shahmandi@gmail.com

1 Introduction

This article aims at analyzing a real data set of a large steel industry complex and fits an appropriate model. Because of special condition of response variable, which is binary, least squares method is not proper and logistic regression model is appropriate. Before fitting model, data are checked because of multicollinearity by mentioned indicators in [Marx and Smith (1990a,b)]. Multicollinearity makes model unstable, and the estimated parameters will be inaccurate. So the interpretation of the relation between the response and each explanatory variable in terms of odds ratios may be erroneous. So researchers suggested some unbiased methods to solve this problem and to estimate the parameters of this model. Some of these methods are principal component (PC), partial least squares (PLS), ridge and Stein. Principal component analysis (PCA) was explained by [Hotelling (1933)]. [Gower (1966)] evaluated the relation between PCA and some statistical techniques. [Hawkins (1973)] recognized an error in multivariate data by PCA. [Fomby et.al (1978)] used the properties of PCA in least squares constrains. [De Leeuw (1986)] explained nonlinear PCA. [Marx (1992)], introduced a spectral of scale explanatory variables that is defined by scale parameter lpha and is named quasistandardization. Scaling parameter values between zero and one lead to an interpolation between correlation and covariance matrices. He pointed out that in practice it may seem unnatural to use parameter values outside the unit interval, in other words behavior of parameter is suspected outside this interval. Selecting the scaling parameter depends on researcher's objectives for the model. [Marx (1992)] used PC and quasistandardization methods for a mine data set because of multicollinearity, and multiple poisson regression was fitted based on the data structure. Then the best α was selected by utilizing some specific indicators to evaluate that model. Finally, the best model was introduced.

Ridge regression was explained by [Hoerl and Kennard (1970)], and [Schaefer et.al (1984)] used ridge estimator in logistic regression.

Stein estimator was introduced by [Stein (1960)] and [Schaefer (1986)] used it in multiple logistic regression.

Also [Marx and Smith (1990b)] used ridge and Stein methods for a data set from lake acidification. [Wold (1984)] introduced PLS. [Escofier and Page's (1988)] evaluated the relation between PLS regression and multiple factor analysis and [Pages and Tenenhaus (2001)] continued it. [Bastien et.al (2005)] applied PLS method for a data set of bordeaux wines because of multicollinearity. [Bjorkstrom (2010)] used Krylov sequences to compare PC and PLS methods in some aspects.

In this article, after identifying multicollinearity we use quasistandardization method, and PC logistic regression models are fitted. After that considering assessment indicators such as deviance and sum of coefficients variance, the best α and the best model are selected. Then by using this α , other methods such as PLS, ridge and Stein are used to estimate model parameters. Finally, according to this data set, the best method is identified to estimate the model parameters.

This article consists of 3 sections. Section 1 is an introduction and gives a brief overview of logistic regression, introduces weighted multicollinearity diagnostics, and defines quasistandardization of explanatory variables. Section 2 explains logistic regression biased estimation methods such as PC, PLS, ridge and Stein methods. Section 3 compares these methods with a real data set of manufacturing steel sheets.

1.1 Logistic Regression

There are many fields of study such as medicine and epidemiology, in which it is very important to predict a binary response variable, or equivalently the probability of occurrence of an event (success), in term of the values of a set of explanatory variables related to it.

Let $X_1, X_2, ... X_p$ be a set of continuous variables observed without error and let us consider n times of observation of such variables that will be resumed in the matrix $\mathcal{X} = (x_{ij})_{n \times p}$. Let $\mathcal{Y} = (y_1, y_2, ..., y_n)'$ be a random sample of a binary response variable Y associated with the observation in \mathcal{X} , that is,

 $y_i \in \{0, 1\}, i = 1, ...n$ then, the logistic regression model is given by

$$i_i = \pi_i + \epsilon_i \qquad i = 1, 2, \dots, n, \tag{1.1}$$

,where π is the expectation of Y given $(X_1 = x_{i1}, X_2 = x_{i2}, \dots, X_p = x_{ip})$ that is modelized as

$$\pi_i = P\{Y = 1 | X_1 = x_{i1}, X_2 = x_{i2}, \dots, X_p = x_{ip}\} = \frac{e^{\beta_0 + \sum_{j=1}^r x_{ij}\beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^p x_{ij}\beta_j}}$$
(1.2)

where $\beta_0, \beta_1, \ldots, \beta_p$ are the parameters of the model and ϵ_i are zero mean independent errors whose variances are given by $Var[\epsilon_i] = \pi_i(1 - \pi_i)$ $i = 1, 2, \ldots, n$. Once the model has been estimated, its goodness of fit must be tested. The most usual method to

$$\left\{ \begin{array}{ll} H_0: l_i = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j & (i = 1, 2, \dots, n) \\ H_1: l_i \neq \beta_0 + \sum_{j=1}^p x_{ij}\beta_j & (\text{some i}) \end{array} \right\}$$

is based on the Wilks statistic (Deviance) defined as $-2\ln\Lambda$, with Λ that is the usual likelihood-ratio statistic. The deviance is given by

$$G^{2}(M) = 2\sum_{i=1}^{n} [y_{i} \ln(\frac{y_{i}}{\hat{\pi}_{i}}) + (1 - y_{i}) \ln(\frac{1 - y_{i}}{1 - \hat{\pi}_{i}})] \xrightarrow[n \to \infty]{H_{0}} \chi^{2}_{n-p-1}$$
(1.3)

This statistic has approximately a chi-squared distribution.

The diagonal matrix *V* contains variance of the estimated \mathcal{Y} values. The matrix $\Phi = X'VX$ is named the information matrix. Denoted $\hat{\Phi} = X'\hat{V}X$ as estimated information matrix, in other words $\hat{\Phi} = \hat{S}'\hat{S}$ that $\hat{S} = V^{\frac{1}{2}}X$. Then we have $\widehat{Var}(\hat{\beta}) = \hat{\Phi}^{-1}$

1.2 Weighted Multicollinearity Diagnostics for Logistic Regression

The logistic model becomes unstable when strong dependence exists among explanatory variables, so it seems that no variable is important when all others are in the model(multicollinearity). To develop suitable diagnostics for multicollinearity and have a standard of comparison, scaling of the information matrix is preferred. These diagnostics were mentioned in [Marx and Smith (1990a,b)].

Weighted Condition Number

solve the test

Consider $\lambda_0^*, \ldots, \lambda_p^*$ as the ordered eigenvalues of $\hat{\Phi}^* = \hat{S^*}' \hat{S}^*$, so that

$$\hat{S}_{ij}^{*} = \frac{\hat{S}_{ij} - \overline{S}_{j}}{\sqrt{\sum_{i=1}^{n} (\hat{S}_{ij} - \overline{S}_{j})^{2}}},$$
(1.4)

and condition numbers are defined as

$$k_j = \left(\frac{\lambda_{max}^*}{\lambda_j^*}\right)^{\frac{1}{2}}$$
, $j = 1, 2, \dots, p$

Large values of k_j (≥ 30) indicate ill conditioning.

Weighted Variance proportion

The weighted proportion of variance for the jth estimated coefficient can be expressed as

$$\omega_{uj} = \frac{m_{ju}^2 / \lambda_u^*}{C_{jj}}$$

that $C_{jj} = \sum_{u=0}^{p} \lambda_u^{*^{-1}} m_{ju}^2$. A small eigenvalue (relative to the maximum eigenvalue) responsible for at least two large proportions suggests that weighted multicollinearity is damaging desirable properties of the logistic regression. For example, if ω_{32} and ω_{34} are large (near one), it will be related to multicollinearity where $\hat{\beta}_4$ and $\hat{\beta}_2$ variances will inflated.

1.3 Quasistandardization of Explanatory Variables

[Marx (1992)] introduced a class of PC estimators for generalized linear regression defined by scaling parameter. The additional parameter allows a spectrum of standardized explanatory variables which can result in interpolation between correlation and covariance matrices. Choice of the scaling parameters depends on the researcher's objectives for the model.

Consider $\mathcal{X} = (x_{ij})_{n \times p}$ as a matrix of continuous explanatory variables, then define:

$$x_{\alpha i j} = q_j^{-\alpha} (n-1)^{\frac{-1}{2}} (x_{i j} - \overline{x}_j)$$

$$q_j^2 = (n-1)^{-1} \sum_{i=1}^n (x_{i j} - \overline{x}_j)^2$$
(1.5)

Denoted $X_{\alpha} = (x_{\alpha i j}), X_{\alpha} = [\mathbf{1}|X_{\alpha}]$. The parameter α allows a spectrum of scaling. He indicated that in practice it may seem unnatural to use parameter values outside the unit interval.

2 Biased Logistic Regression Estimators

Using Taylor series arguments, it can be shown that the maximum likelihood (ML) parameter estimates are asymptotically unbiased. In making certain adjustments to ML, asymptotically biased parameter estimates can be constructed. PC, PLS, ridge and Stein, asymptotically biased estimators, are presented in this article.

2.1 A Continuum of Principal Component Estimators

Sample principal components (PCS) are orthogonal linear spans with maximum variance of the X_{α} matrix columns, denoted by $Z_{\alpha j} = X_{\alpha} m_{\alpha j}$, where $m_{\alpha 1}, m_{\alpha 2}, \ldots, m_{\alpha p}$ are the eigenvectors of the sample information matrix $\hat{\Phi}_{\alpha} = X'_{\alpha} \hat{V}_{\alpha} X_{\alpha}$, which are associated with corresponding eigenvalues $\lambda_{\alpha 1} \ge \lambda_{\alpha 2} \ge \ldots \ge \lambda_{\alpha p}$ of the $\hat{\Phi}_{\alpha}$.

The logistic regression can be expressed in terms of PCS.

$$L_{\alpha} = X_{\alpha}\beta_{\alpha} = Z_{\alpha}M_{\alpha}'\beta_{\alpha} = Z_{\alpha}\gamma_{\alpha}$$

As a result of the invariance property of ML estimations we have:

$$\hat{\beta}^{*pc}_{\alpha} = M_{\alpha} \hat{\gamma}^{*pc}_{\alpha}$$

then, the prediction equation will be $\mathcal{Y} = \hat{\Pi}_{\alpha}^{*pc}$ where $\hat{\Pi}_{\alpha}^{*pc} = (\hat{\pi}_{\alpha}^{*pc}, \hat{\pi}_{\alpha}^{*pc}, \dots, \hat{\pi}_{\alpha}^{*pc})$. This model in terms of a specific subset (s) of principal components is,

$$L_{\alpha(s)} = Z_{\alpha(s)}\gamma_{\alpha(s)} = X_{\alpha}M_{\alpha(s)}\gamma_{\alpha(s)} = X_{\alpha}\beta_{\alpha(s)}$$

where we have

$$\hat{\beta}_{\alpha(s)}^{*pc} = M_{\alpha(s)} \hat{\gamma}_{\alpha(s)}^{*pc} \tag{2.1}$$

For different values of α we can have different PC estimators.

2.2 Partial Least Squares Logistic Regression Estimator

Partial Least Squares Regression

PLS regression is used to study the relationship between a numerical response variable and a set of k explanatory variables in situations in which multiple regression is unstable or not feasible at all (strong multicollinearity, small number of observation compared to the number of variables, missing

data). We can encounter the same kind of problems also in logistic regression and, more generally when using a generalized linear model.

PLS regression defines PLS components given by linear spans of the explanatory variables and uses them as new explanatory variables of regression model.

PC regression and PLS regression differ in the methods used in production of new components. PC regression produces the PC given by the covariance structure between the explanatory variables, while PLS regression produces the PLS components given by covariance structure between the explanatory and response variables.

PLS Generalized Linear Regression (PLS - GLR)

With this constraint that PLS components $t_h = \sum_{j=1}^p w_{hj}^* x_j$ are orthogonal, PLS generalized linear regression of \mathcal{Y} on x_1, x_2, \ldots, x_p with m components is written as

$$g(\Theta) = \sum_{h=1}^{m} c_h (\sum_{j=1}^{p} w_{hj}^* \boldsymbol{x}_j)$$
(2.2)

where the parameter Θ may be either the mean of a continuous Y, or the probability vector of the values taken by a discrete variable Y. The link function g is chosen by the user according to the probability distribution of Y and the model goodness of fit to the data.

PLS-GLR Algorithm

The algorithm consists of four steps:

1- computation of the m PLS components t_h (h = 1, 2, ..., m).

2- generalized linear regression of $\ensuremath{\mathcal{Y}}$ on the m retained PLS components.

3- expression of PLS-GLR in terms of the original explanatory variables.

4- Bootstrap validation of coefficients in the final model of PLS-GLR.

All these steps were expressed in [Bastien et.al (2005)].

2.3 Ridge Logistic Regression Estimator

[Schaefer (1986)] suggested:

$$\hat{\beta}_{Ridge}(k) = (X'_{\alpha}\hat{V}_{\alpha}X_{\alpha} + kI)^{-1}X'_{\alpha}\hat{V}_{\alpha}X_{\alpha}\hat{\beta}$$
(2.3)

The choice of k is subjective, however [Schaefer (1986)] recommended a harmonic mean method, $k = \frac{p+1}{\hat{\beta}'\hat{\beta}}$.

2.4 Stein Logistic Regression Estimator

[Schaefer (1986)] suggested an extension of the [Stein (1960)] estimator for logistic regression. Consider shrinking the ML estimate as follows:

$$\hat{\beta}_{Stein} = c\hat{\beta}_{ML} \tag{2.4}$$

where 0 < c < 1. The purpose of Stein estimation is to shrink both the estimated parameter vector, and the associated standard errors, by a simple scaling technique. *C* is chosen, which minimizes the $E(L) = (c\hat{\beta} - \beta)'(c\hat{\beta} - \beta)$ criterion (with respect to *c*), it will be:

$$c = \frac{(\hat{\beta}'\hat{\beta})}{\hat{\beta}'\hat{\beta} + trace(\hat{\Phi}_{\alpha}^{-1})}$$

3 Example

The objective of the study is to predict the suitable formability of steel sheets produced by industry complex based on five explanatory variables:

 x_1 : yield strength (N/mm^2)

 x_2 : final tensile strength (N/mm^2)

 x_3 : silicon (percent)

 x_4 : aluminium (percent)

 x_5 : nitrogen gas (percent)

Formability is checked by bending test with the angle of zero degree, and if there will no cracks on the steel sheet it will be a success. The steel sheet data set includes 50 observations. At first, the data set is evaluated about multicollinearity. The result is given in table (1).

Table 1.	Variance	proportion	decomposition
Table 1:	variance	proportion	decomposition

E	1-	interest					
E - value	$\mathbf{k}_{\mathbf{j}}$	intercept	$oldsymbol{x}_1$	$oldsymbol{x}_2$	$oldsymbol{x}_3$	$oldsymbol{x}_4$	$oldsymbol{x}_5$
5/2711	1/0000	0/00013	0/0006	0/00020	0/0048	0/0055	0/0037
0/3508	3/8765	0/00004	$0'_{0}0014$	0/00003	0/2099	0/2646	0/0272
0/2096	5/0154	0/00000	0/0018	0/00002	0/2902	0/0895	0/3153
0/1449	6/0313	0/00523	0/0078	0/00703	0/0746	0/3774	0/1869
0/0215	15/6736	0/00330	$0'_{/}5303$	$0'_{0}08123$	$0'_{/}0783$	0/1091	$0'_{0}0792$
0/0022	49/0917	0/99130	0/4581	0/91149	0/3422	0/1539	0/3877

The decomposition matrix has a last row of variables some are nearly one and also there is a large condition number (≥ 30) with the smallest eigenvalue of the information matrix. Both of them indicate multicollinearity. In table (2) and (3) the effects of multicollinearity can be seen on ML parameter estimators.

Table 2: Analysis of maximum likelihood estimates

parameter	df	estimate	standard	wald	pr > chisq
			error	chi - square	
intercept	1	23/1101	12/8375	3/2407	0/0718
X_1	1	-0/0256	0/0400	0/4095	0/5222
X_2	1	-0/0688	0/0326	4/4596	0/0347
X_3	1	-0/1397	0/1306	1/1451	0/2846
X_4	1	0/0430	0/0457	0/8836	0/3472
X_5	1	0/1050	0/0618	2/8825	0/0895

Table 3: Cross-table of observed and predicted response

observed	prec	licted	
response	0	1	sum
0	2	6	8
1	2	40	42
sum	4	46	50

According to p - value, only the explanatory variables x_2, x_5 are statistically significant at the risk level of 0/1. Also we have a high percentage of misclassified responses (16%), that we compute them by assigning to the most probable level of response. Then we compute PC, PLS, ridge, Stein estimators.

For every $\alpha \in [0, 1/2]$, PC estimator with one, two, ... PCS with maximum variances and also forward stepwise estimator are calculated , for example, in figure (1) and (2), it can be seen. Deviance value and sum of coefficient variances are displayed for $\alpha = \{0,3,0/9,1,1/2\}$.

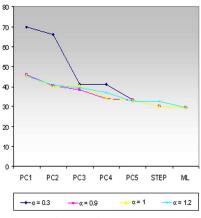


Figure 1: deviance of estimators in terms of α

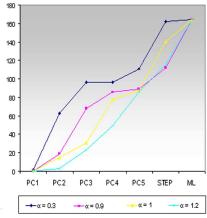
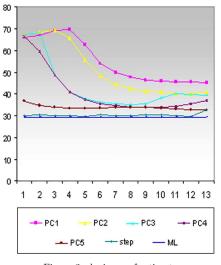


Figure 2: sum of coefficients variance for estimators in terms of α



By increasing every $\alpha \in [0, 1/2]$, the reduction in the amount of sum of coefficients variance and deviance is evident. We can show two previous figures in other shapes (3) and (4).

Figure 3: deviance of estimators

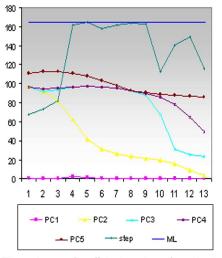


Figure 4: sum of coefficients variance for estimators

It can show PC estimators with 4 and 5 PCS have deviances near to deviance of ML estimators. The sum of coefficients variances of these two estimators is a bit more than other PC estimators, but these variances are less than deviances of ML estimator. Then we select PC estimators with 4 and 5 PCS with $\alpha = 1$ as candidates.

Also [Aucott et.al (1984)] considers that the best estimator for the parameter vector is before a sudden increase of this variance. Then by paying attention to information in table (4) we can select pc estimators with 3 PCS as a another candidate.

pc estimator	deviance	sum of coefficients variance
pc1	45/5765	0/1729
m pc2	40/2760	15/5324
m pc3	40/1439	30/5148
pc4	34/2186	78/2309
pc5	33/0874	$87^{'}_{/}7345$

Table 4: Deviance and Sum of coefficients variance of pc estimators for $\alpha = 1$

Furthermore, we obtain PLS, ridge and Stein estimator with $\alpha = 1$.

PLS Logistic Estimator

At first we compute PLS components. We should fit regression of response variable on every explanatory variable. Due to the results of these regressions, in table (5), all explanatory variables are significant at the risk level of 0/1.

TT 11 F	a	1	D 1	1		C			1 7	
able 5.	Coefficients	and	P-values	LOCISTIC.	regressions	of ree	snonse	on every	revolanator	v variable
rabie 0.	Cocincicitus	and	I values	IOSIDUIC	regressions	OI IU	sponse.	on every	CAPICITATION	y variable

explanatory variable	coefficient	p - value
x_1	-4/8894	0/1000
$oldsymbol{x}_2$	8/1893	$0'_{/}0108$
$oldsymbol{x}_3$	$4'_{/9059}$	$0'_{1}0596$
$oldsymbol{x}_4$	$-4_{1}^{'}6026$	$0'_{/}0884$
$oldsymbol{x}_5$	$-6'_{/}8512$	$0'_{/}0484$

then we have component t_1 ;

$$\begin{array}{rcl} \boldsymbol{t}_1 &=& \displaystyle \frac{-4_{/}8894\boldsymbol{x}_1 + 8_{/}1893\boldsymbol{x}_2 + 4_{/}9059\boldsymbol{x}_3 - 4_{/}6026\boldsymbol{x}_4 - 6_{/}8512\boldsymbol{x}_5}{\sqrt{(4_{/}8894^2 + 8_{/}1893^2 + 4_{/}9059^2 + 4_{/}6026^2 + 6_{/}8512^2)}} \\ &=& \displaystyle -0_{/}3613\boldsymbol{x}_1 + 0_{/}6051\boldsymbol{x}_2 + 0_{/}3625\boldsymbol{x}_3 - 0_{/}3401\boldsymbol{x}_4 - 0_{/}5062\boldsymbol{x}_5 \end{array}$$

For computing t_2 , we should fit regression of response variable on t_1 and every explanatory variable. The results of these regressions are reported in table (6).

explanatory variable	coefficient	p - value
 $oldsymbol{x}_1$	8/3871	0/1708
$oldsymbol{x}_2$	3/5162	0/3896
$oldsymbol{x}_3$	-0/9774	0/7902
$oldsymbol{x}_4$	1/5241	0/6884
$oldsymbol{x}_5$	-1/0733	0/7831

Table 6: Coefficients and P-values logistic regressions of response on every explanatory variable and t_1

Considering p - values, none of the explanatory variables is significant for t_2 structure. Then the model has one component. After fitting regression of response variable on t_1 , we rewrite t_1 based on explanatory variables and, the result is reported in table (7).

Table 7: Response variable regression on t_1 component

	10010 11 1	tesponse variasi	ie regression en	of somponene	
variable	df	parameter	$\operatorname{standard}$	wald	p - value
		estimation	error	chi - squre	
intercept	1	2/1695	0/5477	15/6928	< 0/0001
t_1	1	-8/3026	3/1436	6/9756	0/0083

Moreover we apply mentioned non-parametric validation with B = 1000 for coefficients of PLS logistic regression according to the steel sheets data set and, it is displayed in figure (5).

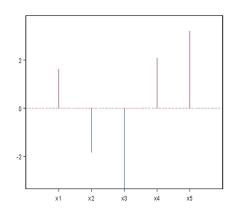


Figure 5: 95% Randomized/balanced bootstrap confidence intervals for parameters

Regarding confidence intervals and having no zero in these intervals, it can show that all explanatory variables are significant. Finally all estimators of parameters become non Quasistandardized. In tables (8) and (9) the results such as estimated parameters and standard deviation of estimators based on all mentioned methods are reported, also in table (10), we have deviance and sum of coefficients variance for estimators.

Table 8	: Estimated p	arameters by	different me	ethods
parameter				
vector	ML	pc3	pc4	pc5
\hat{eta}_0	23/1101	-4/4603	6/2763	8/7784
\hat{eta}_1	-0/0256	0/0173	0/0263	0/0332
\hat{eta}_{2}	-0/0688	0/0045	-0/0379	-0/0459
\hat{eta}_{3}	-0/1397	-0/0277	0/0286	-0/0194
\hat{eta}_4	0/0430	0/0207	0/0336	0/0057
\hat{eta}_5	0/1050	0/0197	0/0119	0/0284
	stepwise pc	ridge	stein	pls logistic
\hat{eta}_0	21/3561	11/3581	15/0609	7/9961
\hat{eta}_1	-0/0331	0/0011	-0/0167	0/0234
\hat{eta}_2	-0/0616	-0/0397	-0/0448	-0/0415
\hat{eta}_3	-0/1061	-0/0619	-0/0911	-0/0989
\hat{eta}_4	0/0714	0/0225	0/0280	0/0318
\hat{eta}_5	0/0822	$0'_{/}0504$	0'/0684	0/0572

Table 8: Estimated parameters by different methods

Table 9: Estimated standard deviation by different methods

standard deviation				
vector	ML	m pc3	pc4	pc5
$SE(\hat{eta}_0)$	12/8375	5/5233	8/8442	9/3658
$SE(\hat{eta}_1)$	0/0400	0/0139	0/0151	0/0174
$SE(\hat{eta}_2)$	0/0326	0/0050	0/0277	0/0294
$SE(\hat{eta}_3)$	0/1306	0/0825	0/0901	0/1078
$SE(\hat{eta}_4)$	0/0457	0/0179	0/0197	0/0396
$SE(\hat{eta}_5)$	$0_{/}0618$	$0'_{/}0344$	$0'_{/}0348$	$0'_{/}0403$
			<i>i</i>	· · · · · ·

	stepwise pc	ridge	stein	pls logistic
$SE(\hat{eta}_0)$	11/8460	7/5051	8/3663	10/6281
$SE(\hat{eta}_1)$	0/0390	0/0193	0/0261	0/0366
$SE(\hat{eta}_2)$	0/0307	0/0209	0/0212	0/0277
$SE(\hat{eta}_3)$	0/0895	0/0811	0/0851	0/1215
$SE(\hat{eta}_4)$	0/0300	0/0280	0/0298	0/0403
$SE(\hat{eta}_5)$	0/0486	0/0340	0/0403	0/0532

Table 10: Deviance and sum of coefficients variance by different methods

	ML	m pc3	pc4	pc5
deviance	29/2748	40/2739	34/2186	33/0874
sum of coefficients variance	$164'_{/}8277$	$30'_{/}5148$	78/2309	$87'_{/}7345$
-				
	stepwise pc	ridge	stein	pls logistic
deviance	30/0249	31/1422	31/6766	31/6144
sum of coefficients variance	140/3416	56/3354	70/0054	112/9771

4 Conclution

- **a** In the section (4), table (9) shows standard deviation for β_0 of all estimators still are inflated, especially for forward stepwise and PLS logistic estimators, that are the same as it is for ML estimator.
- **b** Table (8) shows that forward stepwise and Stein have the same sign. Also PLS logistic, PC with 5 PCS and ridge estimators have another same sign.
- c Table (10) shows by order, forward stepwise, ridge, PLS logistic, Stein and PC estimators with 5, 4, 3 PCS have the less deviances after ML estimator. Also by order ML, forward stepwise, PLS logistic, PC estimators with 5, 4 PCS, Stein, ridge and PC estimator with 3 PCS have the maximum sum of coefficients variances.

Choice of which method is better depends on the purpose of the method. good parameter estimates and good prediction ate two different aspects of the model. With complex data, we do not expect a single model to be the best for all purposes.

According to this steel sheet data set, PC estimator with 3 PCS, ridge and Stein with regard to deviance, have deviances near to ML estimator's deviance and their sum of coefficients variances are much less than that of ML estimator.

All these methods can substantially reduce the variance of the estimated coefficients and prediction variance for future observations outside the mainstream of weighted multicollinearity. Finally, by paying attention to expert's ideas and their expectations about positive and negative effects of explanatory variables on response variable, the estimator that is the most reliable one among the three mentioned estimators is selected.

References

- Aucott, L. S., Garthwaite, P. H., Currall, J. (1984). Regression methods for high dimensional multicollinear data. Commun. Stat., 29, 1021-1037.
- Bastien, P., Vinzi, V. E., Tenenhaus, M. (2005). Pls generalised linear regression. Comput. Stat. Data An., 48, 17-46.
- Bjorkstrom, A. (2010). Krylov sequences as a tool for analysing iterated regression algorithms. Scand. J. Statist., 37, 166-175.
- De Leeuw, J. (1986). Nolinear principal component analysis. In Compstat 82, (Eds. Caussinus H., Eltinger P., Tomassone R.), Wien: Physica-Verlag, 77-86.
- Escofier, B., Page's, J. (1988). Analysis factorielles multiple. Paris: Dunod.
- Fomby, T. B., Hill, R. C., Johnson, S. R. (1978). An optimal property of principal components in the contex of restricted least squares. J. Amer. Atatist. Assoc., 73, 181-193.
- Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Bimetrica, 53, 325-338.
- Hawkins, D. M. (1973). The detection of errors in maltivariate data using principal components. J. Amer. Statist . Assoc., 69, 340-344.
- Hoerl, A. E., Kennard, R. W. (1970). Ridge regression: applications to non orthogonal problems. Technometrics, 12, 69-82.
- Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., 24, 417-441, 498-520.
- Marx, B. D. (1992)., A continuum of principal component generelisad linear regression. Comput. Stat. Data An., 13, 385-393.
- Marx, B. D., Smith, E. P. (1990a). Principal component estimators for generalisad linear regression. Biometrica, 77, 23-31.
- Marx, B. D., Smith, E. P. (1990b). Weighted multicollinearity in logistic regression: diagnostics and biased estimation techniques with an example from lake acidification. Can. J. Fish. Aquat. Sci., 47, 1128-1135.
- Pages, J., Tenenhaus, M. (2001). Multiple factor analysis combined with PLS path modeling, Application to the analysis of relationship between physicochemical variables, sensory profiles and hedonic judgments. Chemometr. Intell. Lab., 58, 261-273.
- Schaefer, R. L. (1986). Alternative estimators in logistic regression when the data are collinear. Stat. Comput. Simul., 25, 79-91.
- Schaefer, R. L., Roi, L. D., Wolf, R. A. (1984). A ridge logistic estimator. Commun. Stat. Theor. M., 13, 99-113.
- Stein, C. M. (1960). Multiple regression. *Contribution to probability and statistics, Stanford university press.*

Wold, H. (1984). PLS regression, Ensyclopadia of Statistical Sciences, Academic Press, New York, 6, 581-591.

©2011 Author1 & Author2; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.