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Abstract

An industry complex produces steel sheets with specific properties such as low thickness, high

strength and suitable formability in order to reduce the vehicle weight and fuel consumption

and prevention of environmental pollution. The aim of this study is to investigate the effect of

mechanical properties such as (yield strength, final tensile strength) and chemical properties like

(silicon, aluminium, nitrogen gas) on suitable formability of manufacturing steel sheets and predict

the probability of crack existence on steel sheets according to real steel data set. Existence or

lake of existence of crack on steel sheet is determined by bending test with the angle of zero

degree. Existence of multicollinearity between mentioned explanatory variables has an effect on the

probability of crack existence. Because the suitable regressions are logistic, correction techniques

based on least squares do not work. Developments in weighted multicollinearity diagnostics

are used to assess maximum likelihood logistic regression parameter estimates. Then principal

component, a biased estimation method, is used in a way that it has additional scaling parameter

which can accommodate a spectrum of explanatory variable standardizations. After that, by this α

scale parameter, other biased estimation methods such as partial least squares, ridge and Stein

are explained. They can considerably reduce the variance of the parameter estimation.
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1 Introduction

This article aims at analyzing a real data set of a large steel industry complex and fits an appropriate
model. Because of special condition of response variable, which is binary, least squares method
is not proper and logistic regression model is appropriate. Before fitting model, data are checked
because of multicollinearity by mentioned indicators in [Marx and Smith (1990a,b)]. Multicollinearity
makes model unstable, and the estimated parameters will be inaccurate. So the interpretation
of the relation between the response and each explanatory variable in terms of odds ratios may
be erroneous. So researchers suggested some unbiased methods to solve this problem and to
estimate the parameters of this model. Some of these methods are principal component (PC),
partial least squares (PLS), ridge and Stein. Principal component analysis (PCA) was explained
by [Hotelling (1933)]. [Gower (1966)] evaluated the relation between PCA and some statistical
techniques. [Hawkins (1973)] recognized an error in multivariate data by PCA. [Fomby et.al (1978)]
used the properties of PCA in least squares constrains. [De Leeuw (1986)] explained nonlinear PCA.
[Marx (1992)], introduced a spectral of scale explanatory variables that is defined by scale parameter
α and is named quasistandardization. Scaling parameter values between zero and one lead to an
interpolation between correlation and covariance matrices. He pointed out that in practice it may seem
unnatural to use parameter values outside the unit interval, in other words behavior of parameter is
suspected outside this interval. Selecting the scaling parameter depends on researcher,s objectives
for the model. [Marx (1992)] used PC and quasistandardization methods for a mine data set because
of multicollinearity, and multiple poisson regression was fitted based on the data structure. Then the
best α was selected by utilizing some specific indicators to evaluate that model. Finally, the best
model was introduced.
Ridge regression was explained by [Hoerl and Kennard (1970)], and [Schaefer et.al (1984)] used
ridge estimator in logistic regression.
Stein estimator was introduced by [Stein (1960)] and [Schaefer (1986)] used it in multiple logistic
regression.
Also [Marx and Smith (1990b)] used ridge and Stein methods for a data set from lake acidification.
[Wold (1984)] introduced PLS. [Escofier and Page‘s (1988)] evaluated the relation between PLS
regression and multiple factor analysis and [Pages and Tenenhaus (2001)] continued it. [Bastien et.al
(2005)] applied PLS method for a data set of bordeaux wines because of multicollinearity. [Bjorkstrom
(2010)] used Krylov sequences to compare PC and PLS methods in some aspects.
In this article, after identifying multicollinearity we use quasistandardization method, and PC logistic
regression models are fitted. After that considering assessment indicators such as deviance and
sum of coefficients variance, the best α and the best model are selected. Then by using this α, other
methods such as PLS, ridge and Stein are used to estimate model parameters. Finally, according to
this data set, the best method is identified to estimate the model parameters.
This article consists of 3 sections. Section 1 is an introduction and gives a brief overview of logistic
regression, introduces weighted multicollinearity diagnostics, and defines quasistandardization of
explanatory variables. Section 2 explains logistic regression biased estimation methods such as
PC, PLS, ridge and Stein methods. Section 3 compares these methods with a real data set of
manufacturing steel sheets.

1.1 Logistic Regression

There are many fields of study such as medicine and epidemiology, in which it is very important to
predict a binary response variable, or equivalently the probability of occurrence of an event (success),
in term of the values of a set of explanatory variables related to it.
Let X1, X2, ...Xp be a set of continuous variables observed without error and let us consider n times of
observation of such variables that will be resumed in the matrix X = (xij)n×p. Let Y = (y1, y2, ..., yn)′

be a random sample of a binary response variable Y associated with the observation in X , that is,
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yi ∈ {0, 1}, i = 1, ...n. then, the logistic regression model is given by

yi = πi + εi i = 1, 2, . . . , n, (1.1)

,where π is the expectation of Y given (X1 = xi1, X2 = xi2, . . . , Xp = xip) that is modelized as

πi = P{Y = 1|X1 = xi1, X2 = xi2, . . . , Xp = xip} =
eβ0+

∑p
j=1 xijβj

1 + eβ0+
∑p

j=1 xijβj
(1.2)

where β0, β1, . . . , βp are the parameters of the model and εi are zero mean independent errors whose
variances are given by V ar[εi] = πi(1− πi) i = 1, 2, . . . , n.
Once the model has been estimated, its goodness of fit must be tested. The most usual method to
solve the test {

H0 : li = β0 +
∑p

j=1 xijβj (i = 1, 2, . . . , n)

H1 : li 6= β0 +
∑p

j=1 xijβj (some i)

}
is based on the Wilks statistic (Deviance) defined as −2 lnΛ, with Λ that is the usual likelihood-ratio
statistic. The deviance is given by

G2(M) = 2

n∑
i=1

[yi ln(
yi

π̂i
) + (1− yi) ln(

1− yi

1− π̂i
)] H0

n−→∞ χ2
n−p−1 (1.3)

This statistic has approximately a chi-squared distribution.
The diagonal matrix V contains variance of the estimated Y values. The matrix Φ = X ′V X is

named the information matrix. Denoted Φ̂ = X ′V̂ X as estimated information matrix, in other words

Φ̂ = Ŝ′Ŝ that Ŝ = V
1
2 X. Then we have V̂ ar(β̂) = Φ̂−1

1.2 Weighted Multicollinearity Diagnostics for Logistic Regression

The logistic model becomes unstable when strong dependence exists among explanatory variables,
so it seems that no variable is important when all others are in the model(multicollinearity). To develop
suitable diagnostics for multicollinearity and have a standard of comparison, scaling of the information
matrix is preferred. These diagnostics were mentioned in [Marx and Smith (1990a,b)].

Weighted Condition Number
Consider λ∗0, . . . , λ

∗
p as the ordered eigenvalues of Φ̂∗ = Ŝ∗

′
Ŝ∗, so that

Ŝ∗ij =
Ŝij − Sj√∑n

i=1(Ŝij − Sj)2
, (1.4)

and condition numbers are defined as

kj = (
λ∗max

λ∗j
)

1
2 , j = 1, 2, . . . , p

Large values of kj (≥ 30) indicate ill conditioning.

Weighted Variance proportion
The weighted proportion of variance for the jth estimated coefficient can be expressed as

ωuj =
m2

ju/λ∗u
Cjj

that Cjj =
∑p

u=0 λ∗
−1

u m2
ju. A small eigenvalue (relative to the maximum eigenvalue) responsible

for at least two large proportions suggests that weighted multicollinearity is damaging desirable
properties of the logistic regression. For example, if ω32 and ω34 are large (near one), it will be
related to multicollinearity where β̂4 and β̂2 variances will inflated.
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1.3 Quasistandardization of Explanatory Variables

[Marx (1992)] introduced a class of PC estimators for generalized linear regression defined by scaling
parameter. The additional parameter allows a spectrum of standardized explanatory variables which
can result in interpolation between correlation and covariance matrices. Choice of the scaling parameters
depends on the researcher,s objectives for the model.
Consider X = (xij)n×p as a matrix of continuous explanatory variables, then define:

xαij = q−α
j (n− 1)

−1
2 (xij − xj)

q2
j = (n− 1)−1

n∑
i=1

(xij − xj)
2 (1.5)

Denoted Xα = (xαij), Xα = [1|Xα]. The parameter α allows a spectrum of scaling. He indicated that
in practice it may seem unnatural to use parameter values outside the unit interval.

2 Biased Logistic Regression Estimators

Using Taylor series arguments, it can be shown that the maximum likelihood (ML) parameter estimates
are asymptotically unbiased. In making certain adjustments to ML, asymptotically biased parameter
estimates can be constructed. PC, PLS, ridge and Stein, asymptotically biased estimators, are
presented in this article.

2.1 A Continuum of Principal Component Estimators

Sample principal components (PCS) are orthogonal linear spans with maximum variance of the Xα

matrix columns, denoted by Zαj = Xαmαj , where mα1, mα2, . . . , mαp are the eigenvectors of the
sample information matrix Φ̂α = X ′

αV̂αXα, which are associated with corresponding eigenvalues
λα1 ≥ λα2 ≥ . . . ≥ λαp of the Φ̂α.

The logistic regression can be expressed in terms of PCS.

Lα = Xαβα = ZαM ′
αβα = Zαγα

As a result of the invariance property of ML estimations we have:

β̂∗pc
α = Mαγ̂∗pc

α

then, the prediction equation will be Y = Π̂∗pc
α where Π̂∗pc

α = (π̂∗pc
α , π̂∗pc

α , . . . , π̂∗pc
α ). This model in

terms of a specific subset (s) of principal components is,

Lα(s) = Zα(s)γα(s) = XαMα(s)γα(s) = Xαβα(s)

where we have
β̂∗pc

α(s) = Mα(s)γ̂
∗pc
α(s) (2.1)

For different values of α we can have different PC estimators.

2.2 Partial Least Squares Logistic Regression Estimator

Partial Least Squares Regression
PLS regression is used to study the relationship between a numerical response variable and a

set of k explanatory variables in situations in which multiple regression is unstable or not feasible at all
(strong multicollinearity, small number of observation compared to the number of variables, missing
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data). We can encounter the same kind of problems also in logistic regression and, more generally
when using a generalized linear model.
PLS regression defines PLS components given by linear spans of the explanatory variables and uses
them as new explanatory variables of regression model.
PC regression and PLS regression differ in the methods used in production of new components. PC
regression produces the PC given by the covariance structure between the explanatory variables,
while PLS regression produces the PLS components given by covariance structure between the
explanatory and response variables.

PLS Generalized Linear Regression (PLS −GLR)
With this constraint that PLS components th =

∑p
j=1 w∗hjxj are orthogonal, PLS generalized

linear regression of Y on x1, x2, . . . , xp with m components is written as

g(Θ) =

m∑
h=1

ch(

p∑
j=1

w∗hjxj) (2.2)

where the parameter Θ may be either the mean of a continuous Y , or the probability vector of the
values taken by a discrete variable Y . The link function g is chosen by the user according to the
probability distribution of Y and the model goodness of fit to the data.

PLS-GLR Algorithm
The algorithm consists of four steps:

1- computation of the m PLS components th (h = 1, 2, . . . , m).
2- generalized linear regression of Y on the m retained PLS components.
3- expression of PLS-GLR in terms of the original explanatory variables.
4- Bootstrap validation of coefficients in the final model of PLS-GLR.
All these steps were expressed in [Bastien et.al (2005)].

2.3 Ridge Logistic Regression Estimator

[Schaefer (1986)] suggested:

β̂Ridge(k) = (X ′
αV̂αXα + kI)−1X ′

αV̂αXαβ̂ (2.3)

The choice of k is subjective, however [Schaefer (1986)] recommended a harmonic mean method,
k = p+1

β̂′β̂
.

2.4 Stein Logistic Regression Estimator

[Schaefer (1986)] suggested an extension of the [Stein (1960)] estimator for logistic regression.
Consider shrinking the ML estimate as follows:

β̂Stein = cβ̂ML (2.4)

where 0 < c < 1. The purpose of Stein estimation is to shrink both the estimated parameter vector,
and the associated standard errors, by a simple scaling technique. C is chosen, which minimizes the
E(L) = (cβ̂ − β)′(cβ̂ − β) criterion (with respect to c), it will be:

c =
(β̂′β̂)

β̂′β̂ + trace(Φ̂−1
α )

.
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3 Example

The objective of the study is to predict the suitable formability of steel sheets produced by industry
complex based on five explanatory variables:
x1: yield strength (N/mm2)
x2: final tensile strength (N/mm2)
x3: silicon (percent)
x4: aluminium (percent)
x5: nitrogen gas (percent)
Formability is checked by bending test with the angle of zero degree, and if there will no cracks on
the steel sheet it will be a success. The steel sheet data set includes 50 observations. At first, the
data set is evaluated about multicollinearity. The result is given in table (1).

The decomposition matrix has a last row of variables some are nearly one and also there is a large
condition number (≥ 30) with the smallest eigenvalue of the information matrix. Both of them indicate
multicollinearity. In table (2) and (3) the effects of multicollinearity can be seen on ML parameter
estimators.
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According to p− value, only the explanatory variables x2, x5 are statistically significant at the risk
level of 0/1. Also we have a high percentage of misclassified responses (16%), that we compute
them by assigning to the most probable level of response. Then we compute PC, PLS, ridge, Stein
estimators.
For every α ∈ [0, 1/2], PC estimator with one, two, ... PCS with maximum variances and also forward
stepwise estimator are calculated , for example, in figure (1) and (2), it can be seen. Deviance value
and sum of coefficient variances are displayed for α = {0/3, 0/9, 1, 1/2}.
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By increasing every α ∈ [0, 1/2], the reduction in the amount of sum of coefficients variance and
deviance is evident. We can show two previous figures in other shapes (3) and (4).
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It can show PC estimators with 4 and 5 PCS have deviances near to deviance of ML estimators.
The sum of coefficients variances of these two estimators is a bit more than other PC estimators, but
these variances are less than deviances of ML estimator. Then we select PC estimators with 4 and 5
PCS with α = 1 as candidates.
Also [Aucott et.al (1984)] considers that the best estimator for the parameter vector is before a sudden
increase of this variance. Then by paying attention to information in table (4) we can select pc
estimators with 3 PCS as a another candidate.

Furthermore, we obtain PLS, ridge and Stein estimator with α = 1.

PLS Logistic Estimator

At first we compute PLS components. We should fit regression of response variable on every
explanatory variable. Due to the results of these regressions, in table (5), all explanatory variables
are significant at the risk level of 0/1.

then we have component t1;

t1 =
−4/8894x1 + 8/1893x2 + 4/9059x3 − 4/6026x4 − 6/8512x5√

(4/88942 + 8/18932 + 4/90592 + 4/60262 + 6/85122)

= −0/3613x1 + 0/6051x2 + 0/3625x3 − 0/3401x4 − 0/5062x5

For computing t2, we should fit regression of response variable on t1 and every explanatory variable.
The results of these regressions are reported in table (6).
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Considering p− values, none of the explanatory variables is significant for t2 structure. Then the
model has one component. After fitting regression of response variable on t1, we rewrite t1 based on
explanatory variables and, the result is reported in table (7).

Moreover we apply mentioned non-parametric validation with B = 1000 for coefficients of PLS logistic
regression according to the steel sheets data set and, it is displayed in figure (5).

Regarding confidence intervals and having no zero in these intervals, it can show that all explanatory
variables are significant. Finally all estimators of parameters become non Quasistandardized.
In tables (8) and (9) the results such as estimated parameters and standard deviation of estimators
based on all mentioned methods are reported, also in table (10), we have deviance and sum of
coefficients variance for estimators.
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4 Conclution

a In the section (4), table (9) shows standard deviation for β0 of all estimators still are inflated,
especially for forward stepwise and PLS logistic estimators, that are the same as it is for ML
estimator.

b Table (8) shows that forward stepwise and Stein have the same sign. Also PLS logistic, PC with 5
PCS and ridge estimators have another same sign.

c Table (10) shows by order, forward stepwise, ridge, PLS logistic, Stein and PC estimators with 5,
4, 3 PCS have the less deviances after ML estimator. Also by order ML, forward stepwise,
PLS logistic, PC estimators with 5, 4 PCS, Stein, ridge and PC estimator with 3 PCS have the
maximum sum of coefficients variances.
Choice of which method is better depends on the purpose of the method. good parameter
estimates and good prediction ate two different aspects of the model. With complex data, we
do not expect a single model to be the best for all purposes.
According to this steel sheet data set, PC estimator with 3 PCS, ridge and Stein with regard
to deviance, have deviances near to ML estimator,s deviance and their sum of coefficients
variances are much less than that of ML estimator.
All these methods can substantially reduce the variance of the estimated coefficients and
prediction variance for future observations outside the mainstream of weighted multicollinearity.
Finally, by paying attention to expert,s ideas and their expectations about positive and negative
effects of explanatory variables on response variable, the estimator that is the most reliable one
among the three mentioned estimators is selected.
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